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Abstract. The stiffness exponents in the glass phase for lattice spin glasses in dimensions d = 3, . . . , 6
are determined. To this end, we consider bond-diluted lattices near the T = 0 glass transition point p∗.
This transition for discrete bond distributions occurs just above the bond percolation point pc in each
dimension. Numerics suggests that both points, pc and p∗, seem to share the same 1/d-expansion, at least
for several leading orders, each starting with 1/(2d). Hence, these lattice graphs have average connectivities
of α = 2dp � 1 near p∗ and exact graph-reduction methods become very effective in eliminating recursively
all spins of connectivity ≤ 3, allowing the treatment of lattices of lengths up to L = 30 and with up to
105 − 106 spins. Using finite-size scaling, data for the defect energy width σ(∆E) over a range of p > p∗

in each dimension can be combined to reach scaling regimes of about one decade in the scaling variable
L(p − p∗)ν∗

. Accordingly, unprecedented accuracy is obtained for the stiffness exponents compared to
undiluted lattices (p = 1), where scaling is far more limited. Surprisingly, scaling corrections typically
are more benign for diluted lattices. We find in d = 3, . . . , 6 for the stiffness exponents y3 = 0.24(1),
y4 = 0.61(2), y5 = 0.88(5), and y6 = 1.1(1).

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Cn Order-disorder
transformations; statistical mechanics of model systems – 75.10.Nr Spin-glass and other random models –
02.60.Pn Numerical optimization

1 Introduction

The stiffness exponent y (often labeled θ) is one of
the most fundamental quantities to characterize the low-
temperature state of a disordered spin system [1]. It pro-
vides an insight into the effect of low-energy excitations of
such a system [2,3]. A recent study suggested the impor-
tance of this exponent for the scaling corrections of many
observables in the low-temperature regime [4], and it is an
essential ingredient to understand the true nature of the
energy landscape of finite-dimensional glasses [5–7].

To illustrate the meaning of the stiffness exponent,
one may consider an ordinary Ising ferromagnet of size
Ld with bonds J = +1, which is well-ordered at T = 0 for
d > 1, having periodic boundary conditions. If we make
the boundary along one spatial direction anti-periodic, the
system would form an interface of violated bonds between
mis-aligned spins, which would raise the energy of the sys-
tem by ∆E ∼ Ld−1. This “defect”-energy ∆E provides a
measure for the energetic cost of growing a domain of over-
turned spins, which in a ferromagnet simply scales with
the surface of the domain. In a disordered system, say, a
spin glass with an equal mix of J = ±1 couplings, the
interface of such a growing domain can take advantage of
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already-frustrated bonds to grow at a reduced or even van-
ishing cost. Defect energies will be distributed with zero
mean, and the typical range, measured by the width of
the distribution σ(∆E), may scale like

σ(∆E) ∼ Ly. (1)

Clearly, it must be y ≤ d−1, and a bound of y ≤ (d−1)/2
has been proposed for spin glass systems generally [2].
Particularly, ground states of systems with y ≤ 0 would
be unstable with respect to spontaneous fluctuations,
which could grow at no cost, like in the case of the one-
dimensional ferromagnet where y = d − 1 = 0. Such a
system does not manage to attain an ordered state for
any finite temperature. Conversely, a positive sign for y
at T = 0 indicates a finite-temperature transition into an
ordered regime while its value is a measure of the stabil-
ity of the ordered state. Furthermore, in a d-dimensional
family of systems, the marginal value ydc = 0 provides the
lower critical dimension dc for such systems.

Accordingly, there have been many attempts to ob-
tain the value of stiffness exponents in finite-dimensional
spin glasses [7–17], using transfer matrix, optimization,
or renormalization group techniques. In the early days
of spin-glass theory, it was soon argued that y < 0 for
d ≤ 2 and y > 0 for d ≥ 3 [8,11]. Only recently, though,
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the stiffness exponent for d = 2, below the lower criti-
cal dimension, has been improved to considerable accu-
racy, y2 = −0.282(2) [15,16]. There has still been little
progress in the accurate determination of y3 in the last
20 years, despite significant increases in computational
power. It’s value is expected to be small and positive, and
so far has been assumed to be near y3 ≈ 0.19 [11,13], al-
though there have been investigations recently pointing to
a larger value, such as 0.23 [7] or 0.27 [15]. In some sense,
all of these results are consistent, since they were obtained
over exceedingly small scaling windows, L = 6, . . . , 12 at
best, and large errors have to be assumed. In d = 4 the
only value reported to date has been y4 = 0.64(5) using
L ≤ 7 [14].

In this paper we use numerical investigations of ±J
spin glasses on dilute lattices to obtain improved pre-
dictions for the stiffness exponents in dimensions d =
3, . . . , 6. First, we explore such lattices near their bond-
percolation transition pc to find a separate transition
p∗ > pc into a T = 0 spin-glass state, as anticipated by
references [17,18]. We find that p∗ becomes ever closer
to pc for increasing d, both scaling with 1/(2d). Thus,
near either transition, bond-diluted lattices have spins
with connectivities distributed near 2dp∗ ≈ 1. Such sparse
graphs can be effectively reduced with a set of exact rules
that eliminate a large fraction of spins, leaving behind
a small, compact remainder graph that is easier to opti-
mize. The increase in the scaling regime with lattice size,
in combination with finite-size scaling techniques, leads
to much improved or entirely new predictions for the stiff-
ness exponents of low-dimensional lattices. In particular,
we find that y3 = 0.24(1), y4 = 0.61(2), y5 = 0.88(5),
and y6 = 1.1(1). Our value in d = 3 is at the higher end of
most previous studies and amazingly close to (but distinct
from) the value obtained with the Migdal-Kadanoff ap-
proximation, yMK

3 = 0.25546(3) [17]. The value for d = 4 is
consistent with reference [14] and quite below the Migdal-
Kadanoff value, yMK

4 = 0.76382(5). The value for the up-
per critical dimension, du = 6, may be consistent with
unity. Yet, studies in even higher dimensions [19] indicates
a further rise in yd with d, which appears to agree with
recent replica theory predictions for d ≥ 6 [20], although
the specific numerical values for yd are significantly below
those predictions.

In the following section, we discuss the observables
that our numerical experiments measure, in Section 3
we describe the reduction rules for low-connected spins
and the optimization method use in this study. Section 4
presents the results of the experiments for the thresh-
old p∗, the correlation-length exponent, ν∗, for the transi-
tion into a glassy state for increasing bond density at p∗,
and the stiffness exponent y, in each dimension. In Sec-
tion 5 we conclude with a discussion regarding the d-
dependence of y.

2 Determining stiffness exponents

To understand why the accurate determination of these
stiffness exponents is such a challenging task, it is

important to appreciate its complexity: Most numerical
studies are based on sampling the variance

σ(∆E) =
√
〈∆E2〉 − 〈∆E〉2 (2)

of the distribution of defect energies ∆E obtained via in-
verted boundary conditions (or variants thereof [15]), as
described above. Thus, for an Ising spin glass with pe-
riodic boundaries, an instance of fixed, random bonds is
generated, its ground-state energy is determined, then all
bonds within a hyperplane have their sign reversed and
the ground-state energy is determined again. The defect
energy is the often-minute difference between those two
ground state energies. Then, many such instances of a
given size L have to be generated to sample the distri-
bution of ∆E and its width σ(∆E) accurately. Finally,
σ(∆E) has to be fitted to equation (1) for a sufficiently
wide range of L in the asymptotic regime.

The most difficult part of this procedure, limiting the
range of L that can be achieved, is the accurate determi-
nation of the ground state energies in the first place. While
for d ≤ 2 efficient algorithms exist to determine ground
state energies exactly, and large system sizes can be ob-
tained [15,16], for d ≥ 3 no such algorithm exists: Finding
ground states is known to be an NP-hard optimization
problem [21] with the cost of any exact algorithm likely to
rise faster than any power of L. There have been a variety
of accurate measurements of ground-state energies [22–24]
using heuristic methods. In these measurements small sys-
tematic errors in failing to obtain a ground state tend to
submerge beneath the statistical error. In contrast, for the
defect energy the extensive leading-order contributions to
the ground states are subtracted out, and such system-
atic failings may surface to dominate any statistical errors.
Accordingly, system sizes that can be approximated with
heuristics may turn out to be far more limited than one
may have anticipated based on those previous studies.

To increase the range of system sizes L without increas-
ing the optimization problem, we observe that a bond-
diluted lattice will have the same defect energy scaling
as a fully connected lattice. Above the finite-size scaling
window for bond-percolation near pc, the dominant cluster
embedded on the lattice is a compact structure with the
same long-range properties of the fully connected lattice.
Similarly, the spin-glass problem defined on that cluster
should exhibit the same long-range behavior as the undi-
luted lattice glass at T = 0, their difference being of a
short-range geometric nature. Hence, for all bond densi-
ties p above the scaling window of the T = 0 glass transi-
tion, equation (1) should be applicable. Yet, a spin glass
on a bond-diluted lattice in turn can be expected to be less
frustrated, up to the point that frustration fails to create
long-range correlated behavior. This is certainly the case
below the bond-percolation transition pc, where any de-
fects should remain localized. Thus we focus on the regime
somewhere above pc, where the system can exhibit spin-
glass behavior but where we may take advantage of the
weakened frustration to optimize larger system sizes L.

As another feature of our new approach, the intro-
duction of a new control parameter, the bond density p,
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permits a finite size scaling Ansatz. Combining the data
for all L and p leads to a new variable which has the
chance of exhibiting scaling over a wider regime than L
alone. As has been argued in reference [18], we can make
an Ansatz of

σ(∆E) ∼ Y Lyg
[
L (p − p∗)ν∗]

, (3)

where Y ∼ Y0(p−p∗)f refers to the surface tension, which
must vanish for p → p∗, and g is a scaling function in the
new scaling variable, x = L (p − p∗)ν∗

. The exponent ν∗
describes the divergence of the correlation length for the
transition into the ordered state at p∗. (In the Migdal-
Kadanoff approximation, it was found that ν∗ is larger
than ν of the percolation transition [18].) Scale invariance
at p → p∗ dictates f = yν∗, and in terms of the scaling
variable x we have

σ(∆E) ∼ Y0 xyg(x). (4)

We will use the finite-size scaling relation in equa-
tion (4) to analyze our data in Section 4.2. In the following
section, we describe the new algorithm for spin glasses on
dilute lattices, which at T = 0 traces out many weakly
connected spins to leave a much reduced remainder graph
that can be optimized subsequently by other means.

3 Reduction algorithm for the energies

We will describe the reduction algorithm for spin glasses
on general sparse graphs at T = 0 in more detail else-
where [25], including its ability to compute the entropy
density and overlap (see also [17]). We focus here exclu-
sively on the reduction rules for the ground state energy.
We have used these reduction rules previously for large
three-connected Bethe lattices [26]. These rules apply to
general Ising spin glass Hamiltonians

H = −
∑
〈i,j〉

Ji,j xi xj , (xi = ±1), (5)

with any bond distribution P (J), discrete or continuous,
on arbitrary sparse graphs. Here, we use exclusively a ±J
bond distribution, and bond-diluted hyper-cubic lattices
in d ≥ 3. A Gaussian or any other distribution with zero
mean and unit variance is expected to yield the same value
of y [4]. Our preliminary experiments with a Gaussian
distribution have shown faster converging averages at a
given L, but more persistent scaling corrections for in-
creasing L.

The reductions effect both spins and bonds, eliminat-
ing recursively all zero-, one-, two-, and three-connected
spins and their bonds, but also adding new bonds between
spins which may or may not have been connected previ-
ously. These operations eliminate and add terms to the
expression for the Hamiltonian in equation (5), leaving it
form-invariant. Offsets in the energy along the way are ac-
counted for by a variable Ho, which is exact for at T = 0.

Fig. 1. Depiction of the “star-triangle” relation to reduce a
three-connected spin (x0, center-left). The values for the new
bonds on the right are obtained in equation (9).

Rule I: An isolated spin, which does not contribute to
the sum in equation (5) at all, can be eliminated without
changing that sum.

Rule II: A one-connected spin i can be eliminated,
since its state can always be chosen in accordance with
its neighboring spin j to satisfy the bond Ji,j , i.e. in the
only term in equation (5) relating to xi,

xi xj Ji,j ≤ |Ji,j | (6)

we can always choose xi to saturate the bound, which
is the energetically most favorable state. With that, we
adjust Ho := Ho−|Ji,j | and eliminate the term −Ji,j xi xj

from H .
Rule III: A double bond, J

(1)
i,j and J

(2)
i,j , between two

vertices i and j can be combined to a single bond by
setting Ji,j = J

(1)
i,j + J

(2)
i,j or be eliminated entirely, if

the resulting bond vanishes. This operation is very use-
ful, since it lowers the connectivity of i and j at least by
one. Particular to discrete bond distributions, there is a
finite probability that the two original bonds cancel each
other (Ji,j = 0), which may entirely disconnect i and j
and reducing their connectivity by two. (Double bonds
are absent from the original lattice but may arise via the
recursive application of these reduction rules.)

Rule IV: For a two-connected spin i, its two terms in
equation (5) can be rewritten

Ji,1xix1 + Ji,2xix2 = xi(Ji,1x1 + Ji,2x2)
≤ |Ji,1x1 + Ji,2x2|
= J1,2x1x2 + ∆H, (7)

with

J1,2 =
1
2

(|Ji,1 + Ji,2| − |Ji,1 − Ji,2|) ,

∆H =
1
2

(|Ji,1 + Ji,2| + |Ji,1 − Ji,2|) ,

leaving the graph with a new bond J1,2 between spin 1
and 2, and acquiring an offset Ho := Ho − ∆H .

Rule V: A three-connected spin i can be reduced via a
“star-triangle” relation (see Fig. 1):

Ji,1xix1 + Ji,2xix2 + Ji,3xix3)
= xi (Ji,1x1 + Ji,2x2 + Ji,3x3)
≤ |Ji,1x1 + Ji,2x2 + Ji,3x3|
= J1,2x1x2 + J1,3x1x3 + J2,3x2x3 + ∆H, (8)
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with

J1,2 = −A − B + C + D, J1,3 = A − B + C − D,

J2,3 = −A + B + C − D, ∆H = A + B + C + D,

A = 1
4 |Ji,1 − Ji,2 + Ji,3| , B = 1

4 |Ji,1 − Ji,2 − Ji,3| ,
C = 1

4 |Ji,1 + Ji,2 + Ji,3| , D = 1
4 |Ji,1 + Ji,2 − Ji,3| .

The bounds in equations (6–9) are saturated for the right
choice of the spin xi that links the terms together, thus
optimizing its alignment with the local field as is required
when the remaining graph takes on its ground state. In
turn, for T > 0 the eliminated spin xi may not take on its
own energetically most favorable state to minimize the free
energy of the configuration instead. Hence, the reduction
algorithm is exact only in determining the ground state.

Reducing four- and higher-connected spins would lead
to new bonds that connect more than 2 spins, creating in
general a hyper-graph with multi-spin interaction terms.
For instance, a term in H connecting a spin x0 to four
other spins would be replace by one term connecting all
four, six terms mutually connecting the four neighbors
in all possible pairs, and an energy offset1. While such a
strategy may be useful, we will confine ourselves here to
reductions producing only new two-spin interactions.

It is important that these rules are applied recursively
and in the given order. That is, one may only apply Rule II
after there are no more spins reducible by Rule I, apply
Rule III only after both, Rule I and Rule II, have been ex-
hausted, etc. And after the application of any higher rule,
it needs to be checked if structures have been generated to
which any lower rule may now apply. For example, the re-
cursion may have generated a spin that is two-connected,
but via a double bond to a single other spin. Applying
Rule IV to that spin before Rule III would lead to the
other spin having a bond onto itself, a problematic situ-
ation for which we have no rule. In any event, even if we
had provided more rules for all eventualities, it is still far
more efficient to first reduce the lowest connected spin at
any one time.

After all these rules have been exhausted, the origi-
nal lattice graph is either completely reduced (which is
almost certainly the case for p < pc), in which case Ho

provides the exact ground state energy already, or we are
left with a much reduced, compact graph in which no spin
has less than four connections. Note that bonds in the re-
mainder graph may have properties uncharacteristic of the
original bond distribution. For example, ±J-bonds may
have combined to bonds of any integer multiple of J (e.g.
via Rule III). Here, we obtain the ground state energy of
the reduced graph with the extremal optimization heuris-
tic [24], which together with Ho provides a very accurate
approximation to the ground state energy of the origi-
nal diluted lattice instance. Clearly, we could have just as
well used other heuristics or exact methods to treat the
remainder graph.

1 As long as H only contains terms connecting an even num-
ber of spins, the reduction will preserve that evenness.

4 Numerical results

The following data was obtained during a window of about
two months on a cluster of 15 Pentium4 PC running at
2.4 GHz with 256 MB of RAM.

The runtime of the EO heuristic was fixed to grow
as (n/5)3 with the number n of spin variables in the re-
mainder graph after the reduction had been applied. In
reference [24] it was found that typically O(n4) updates
for instances up to n ∼ 103 were needed to obtain con-
sistently reproducible ground state energies. Since we are
aiming at much larger statistics and typically smaller in-
stances in the present study, we opted for a more limited
runtime. Instead, an adaptive multiple restart system was
used such that for each instance at least 3 runs from fresh
random initial spin configurations were undertaken. If a
new best-so-far configuration is found in run r, at least
a total of 2r restarts would be applied to these more de-
manding instances [27]. For instances with n > 700 appar-
ent inaccuracies in sampling the difference between ground
state energies, ∆E, become noticeable.

For highly connected graphs with few spins to reduce,
local search with the EO heuristic dominated by far the
computational time. Our implementation of the reduction
algorithm, originally conceived with d = 3 lattices with
up to L = 30 in mind, started contributing significantly
to the computational cost for instances with Ld > 105,
hence most noticeably in the study of p∗ in d = 5 and 6.

4.1 Determination of p∗

In reference [18] it was shown that spin glasses on diluted
lattices may possess a distinct critical point p∗ in their
bond fraction, which arises from the (purely topological)
percolation threshold pc of the lattice in conjunction with
a discrete distribution of the bond weights P (J). Clearly,
no long-range correlated state can arise below pc. A criti-
cal point distinct from percolation, p∗ > pc, emerges when
such an ordered state above pc remains suppressed due
to collaborative effects between bonds [18] (see Rule III
in Sect. 3). Just above pc, the infinite bond-cluster is
very filamentary and may easily be decomposed into finite
components through such collaborative effects, involving
a small number of bonds along narrow “bridges” between
those components. Thus, to observe the onset of glassy
properties on a dilute lattice, we have to cross another
threshold p∗ ≥ pc first. In reference [17], we were able to
locate p∗ for the Migdal-Kadanoff lattice in accordance
with theory [18] by using the defect energy scaling from
equation (1): For all p > p∗ the stiffness exponent y even-
tually took on its p = 1 value, while for any p < p∗ defect
energies diminished rapidly for increasing L.

In each dimension, we have run the above algorithm
on a large number of graphs (about 105 − 106 for each L
and p) for p increasing from pc in small steps. For each
given p, L increased until it seemed clear that σ(∆E)
would either drop or rise for good. In this way, we bracket-
in p∗, as shown in Figure 2. Both, the bond-percolation



S. Boettcher: Stiffness exponents for lattice spin glasses in dimensions d = 3, . . . , 6 87

10 15 20 25 30
L

0.9

1.0

1.1

1.2

1.3

1.4

σ(
∆E

)

p=0.278
p=0.276
p=0.275
p=0.274
p=0.273
p=0.272
p=0.271
p=0.270

d=3

5 10 15
L

0.7

0.8

0.9

1.0

σ(
∆E

)

p=0.1680
p=0.1670
p=0.1665
p=0.1660
p=0.1655
p=0.1650

d=4

5 10
L

0.7

0.8

0.9

1.0

σ(
∆E

)

p=0.1210
p=0.1208
p=0.1206
p=0.1204
p=0.1202
p=0.1200

d=5

5 10
L

0.7

0.8

0.9

1.0

1.1

1.2

0.6

σ(
∆Ε

) p=0.0958
p=0.0956
p=0.0954
p=0.0952
p=0.0950
p=0.0948
p=0.0946
p=0.0944

d=6

Fig. 2. Plot on a logarithmic scale of the variance σ(∆E) of
the defect energy as a function of systems size L for various
bond fractions p > pc in d = 3 to 6. In each case, σ(∆E) drops
to zero rapidly for increasing L at smaller p, but turns around
and rises for larger p, indicative of a nontrivial glassy state at
low T . Near p∗, σ(∆E) undergoes ever longer transients. The
values for the thresholds p∗ as suggested by the plots are listed
in Table 1.
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Fig. 3. Plot of the known bond-percolation thresholds pc, the
T = 0 glass transition thresholds p∗ determined in Figure 2,
and the 1/d-expansion of pc in equation (9) as a function of d.
The insert shows ln(p∗−pc)/ ln(2d) vs. 1/ ln(2d), extrapolating
seemingly toward α ≥ 4 as in equation (10).

Table 1. List of the bond-density thresholds on hyper-cubic
lattices for percolation pc (taken from Ref. [28]) and for the
T = 0-transition into a spin glass state, p∗, as determined
from Figure 2. The values of p∗ are dependent on the bond
distribution which is ±J here.

d pc p∗

3 0.2488 0.272(1)
4 0.160130 0.1655(5)
5 0.118174 0.1204(2)
6 0.0942 0.0952(2)

thresholds pc, taken from reference [28], and our results
for p∗ are listed in Table 1.

It is interesting to compare the values of p∗ to those of
pc for increasing dimension d. In Figure 3 we plot both,
pc and p∗, as a function of d, together with the prediction
of the three-term 1/d expansion [29]

pc ∼ 1
2d

+
(

1
2d

)2

+
1
2

(
1
2d

)3

· (9)

The difference p∗ − pc clearly decreases for d → ∞. As-
suming

p∗ − pc ∼ (2d)−α (d → ∞), (10)

we plotted ln(p∗ − pc)/ ln(2d) vs. 1/ ln(2d) in the insert
of Figure 3 to extrapolate for α. This crude extrapolation
suggests α ≥ 4, so that p∗ may share the 1/d-expansion
of pc in equation (9), at least up to the given order. In
any case, a bond-diluted lattice system with discrete ±J
bonds enters its spin glass phase at an average connec-
tivity 2dp∗ ≈ 1, and the reduction methods outlined in
Section 3 should be very effective in any sufficiently large
dimension for p � p∗.

The value of p∗ is distribution-dependent [18], and the
values determined here and listed in Table 1 result from
discrete ±J-bonds. It is expected that p∗ = pc for any
continuous distribution. The precise values for p∗, while
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interesting in their own right, are not important for the fol-
lowing discussion of the defect energy scaling. We merely
need to ensure a selection of bond densities sufficiently
above p∗, where we would expect equation (1) to hold,
and sufficiently close to p∗ for an effective application of
the reduction rules in Section 3.

4.2 Determination of defect energy scaling

We have conducted extensive numerical experiments to
extract the asymptotic scaling of σ(∆E) for a many con-
veniently chosen bond densities p, especially in d = 3, but
also in higher dimensions, up to the upper critical dimen-
sion d = 6 [1]. As mentioned in Section 2, an appropriate
choice of p is crucial to ensure a good compromise between
maximal algorithmic performance (for smaller p > p∗) and
minimal scaling corrections (for larger p) that maximizes
the actual scaling window. While we can estimate the ef-
fect of p on the performance of our algorithm, we have
a-priori no information about scaling corrections. We will
see that scaling corrections are indeed large for p → p∗.
Yet, as luck will have it, they diminish rapidly for inter-
mediate values of p and again increase for p → 1 (at least
in lower dimensions, where this limit was considered).

For the study of p∗, in principle very large system
sizes can be reached due to the complete reduction of very
sparse graphs. Since optimizing the spin glass on the re-
mainder graph is an NP-hard problem, we have obtained
more limited maximal system sizes above p∗, dependent
of the bond density p. We obtained sizes ranging up to
L = 30 at p = 0.28 to L = 9 at p = 1 in d = 3, L = 15
at p = 0.18 to L = 5 at p = 1 for d = 4, L = 13 at
p = 0.125 to L = 5 at p = 0.22 in d = 5, and L = 9 at
p = 0.1 to L = 4 at p = 0.17 in d = 6. For each choice of
L and p, we have sampled the defect energy distribution
with typically N ≈ 104 − 105 instances, then determined
its variance σ(∆E). For each data point for σ(∆E) the
error bar is ≈ 5 − 10/

√
N . In Figure 4, we plot all the

data for each dimension simply according to equation (1),
on a logarithmic scale. For most sets of graphs, a scaling
regime (linear on this scale) is visible. Yet, various devia-
tions from scaling can be observed. Clearly, each sequence
of points should exhibit some form of small-size correc-
tions to scaling for smaller L. For large L, the inability
to determine defect energies correctly (according to the
discussion in Sect. 2), will inevitably lead to a systematic
bias in σ. Some data sets did not exhibit any discernible
scaling regime whatsoever, most notably our data set for
the undiluted lattice in d = 3.

To obtain an optimal scaling collapse of the data, we
focus on the data inside the scaling regime for each set.
To this end, we chose for each data set a lower cut in L
by inspection. An appropriate high-end cut is introduced
by eliminating all data points for which the remainder
graph had a typical size of > 700 spins; at that point
the EO heuristic (within the supplied runtime) seems to
fail in determining defect energies with sufficient accuracy.
All the remaining data points for L and p are fitted to a

Fig. 4. Plot on a logarithmic scale of the width σ of the defect
energy distribution as a function of system size L. From top
to bottom, the data for dimensions d = 3, d = 4, d = 5, and
d = 6 is shown. The data is grouped into sets (connected by
lines) parameterized by the bond density p. Most sets show a
distinct scaling regime as indicated by equation (1) for a rang
of L above finite scaling corrections but below failing accuracy
in the optimization heuristic.
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Table 2. List of the fitted values for the critical bond-
density p∗, the correlation-length exponent ν∗, the surface
tension Y0, and the stiffness exponent y in each dimension
3 ≤ d ≤ 6. Included is also the Q-value for each fit. The values
for p∗ here are bound to be less accurate than those directly
determined in Section 4.1, but are consistent. In contrast, the
values for y are quite stable.

d p∗ ν∗ Y0 y Q (DoF)
3 0.2706 1.17 2.37 0.239 1.00 (92)
4 0.1699 0.60 2.43 0.610 0.00 (47)
5 0.1217 0.50 3.05 0.876 0.86 (48)
6 0.0959 0.44 3.87 1.103 0.02 (46)

four-parameter scaling form,

σ(∆E) ∼ Y0

[
L (p − p∗)ν∗]y

, (11)

i.e. approximating the scaling function g(x) from equa-
tion (4) merely by unity, its leading behavior for large
argument. Unfortunately, we have no knowledge of the
functional form for finite-size corrections, making the low-
L cut on the data a necessity. In Table 3 we have listed
the number of instances N averaged over only for those
(p, L)-data points that were judged to be in the scaling
window. Note that all data above the low-L and below
the high-L cut for each p was kept unaltered.

The fitted values for this and the other fitting con-
stants (p∗, ν∗, and y) are listed in Table 2. Holding p∗
fixed at the independently determined values from Table 1
reduces the variance in the remaining fitting parameters
without changing much in their quoted values. Using the
parameters of this fit, we re-plot only the data from the
scaling regime in each dimension in Figure 5.

In each case, a convincing scaling collapse is obtained.
Clearly, our data for d = 3 is not only the most extensive,
but also happens to scale over nearly two decades without
any discernible deviation or trend away from pure power-
law scaling that would betray any systematic bias or lack
of asymptotic behavior. This justifies a certain degree of
confidence to project y3 = 0.24(1) for the scaling expo-
nent where the quoted error is based on the uncertainty
in the fit. Troublesome is the observation that the data
for the undiluted lattice (p = 1) never reaches the scal-
ing regime (see Fig. 5, top). This may be in accordance
with the observation of reference [30], which found very
long transients in a similar study on undiluted Migdal-
Kadanoff lattices (see also Ref. [17]), or similar findings
for undiluted lattices [31]. In our data, systematic errors
in sampling ground states seem to set in for large L, before
any scaling regime is reached at all.

For increasing dimension d, accessible scaling regimes
become shorter, leading to more difficulty in determining
an accurate fit of the power law. In d = 4 we can still
claim scaling for about a decade in the scaling variable,
justifying a prediction of y4 = 0.61(2). In d = 5 and d = 6,
we only reach scaling windows significantly shorter than a
decade. Luckily, yd increases with increasing d, thus larger
absolute errors still result in acceptable relative errors, and
we predict from the fits in Figure 5 that y5 = 0.88(5) and
y6 = 1.1(1).

Fig. 5. Scaling plot of the data from Figure 4 for σ, fitted to
equation (11) as a function of the scaling variable x = L(p −
p∗)ν∗

. Data above or below the scaling regime in each set from
Figure 4 was cut. From top to bottom, the scaling collapse
of the data for dimensions d = 3 to 6 is shown. The lines
represent a power-law fit of the collapsed data which provides
an accurate determination of the stiffness exponent y in each
dimension. For d = 3 (top), we have also included the data for
p = 1, which does not appear to connect to the scaling regime.
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Table 3. Listing of the number of instances optimized at the bond densities p and system sizes L in Figure 4 that are actually
used in Figure 5. Data points displayed in Figure 4 but left blank in this list were judged to be outside of the scaling regime
either because of too small L to be asymptotic or because the remainder graph was too large (n > 700) to be accurately
optimized.

L

d p 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30

3 0.28 1e5 1e5 1e5 1e5 2e5 9e4

0.285 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5

0.29 2e6 2e6 2e6 2e6 2e6 1e6 1e6 1.8e5

0.3 1e7 1.2e6 1.2e6 1.2e6 1.2e6 1.2e6 1.2e6 1.2e6 2.5e5 2.5e5 2.5e5 2.5e5 2.5e5

0.32 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5 1e5

0.35 1.25e6 1.25e6 1.25e6 2.4e5 2.4e5 2.4e5 1.6e5 1e5 1e5 1e5 1e4

0.4 1e5 1e5 1.2e6 1.2e5 1.2e5 1.2e5 1.2e5 1e5 2e5 6e3

0.45 1.2e5 1.2e5 1.2e5 1.2e5 1.2e5 1.2e5 1.2e5 1e5 5e4

0.5 4e4 4e4 4e4 4e4 4e4 4e4 4e4 1.6e4

0.6 2e4 2e4 2e4 2e4 2e4 2e4

0.7 5e4 5e4 5e4 1e4

0.8 7e4 7e4 3.5e4

4 0.18 2.4e6 2.4e6 2.4e6 2.4e6 2.4e6 2.4e6 1.2e6

0.19 2e4 2e4 2e4 2e4 2e4 2e4

0.20 1.1e5 1.1e5 1.1e5 1.1e5 1.1e5 1.1e5 6e4 3e4 5e3

0.22 1.5e5 1.5e5 1.5e5 1.5e5 1.5e5 8.5e4 1.6e4

0.25 1.3e6 6.2e5 6.2e5 2e5 4e4

0.3 5e4 5e4 5e4 3e3

0.4 3e4 2.5e4 1e4

0.5 3e4 3e4 1e4

0.6 1e4 1e4

0.7 3e4 1.7e4

0.8 3e4 2e3

5 0.124 2e4 2e4 2e4 2e4

0.125 2e4 2e4 2e4 2e4 2e4 2e4

0.13 2e4 2e4 2e4 2e4 2e4 2e4

0.14 4e4 4e4 4e4 4e4 4e4 8e3

0.15 4e4 4e4 4e4 4e4 2e4

0.16 2e4 2e4 2e4 1e4 1e4

0.17 3e4 3e4 3e4 1e4

0.18 5e4 5e4 5e4 1e4

0.19 4e4 4e4 4e4 1e3

0.2 3e4 3e4 3e4

0.22 2e4 2e4 2e4

0.25 2e4 2e4

6 0.098 2e4 2e4 3.5e3

0.099 2e4 2e4

0.1 2e4 2e4 2e4 2e4

0.101 2e4 2e4 4e3

0.103 4e4 4e4 4e4

0.105 4e4 4e4 4e4 4e4 1e4

0.11 1.3e5 8e4 5e4 1e4

0.115 2e4 2e4 2e4

0.12 1.1e5 1e5 1.3e4

0.125 2e4 2e4 2e4

0.13 8e4 6e4 1.2e4

0.135 2e4 2e4 3e3

0.14 1.1e5 5e4

0.15 1e5 3.5e4

0.16 4e4 2e4

0.17 6e4 2.2e4
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5 Conclusions
We have used the combined effort of an exact reduction
method and an efficient heuristic to determine the defect
energy distribution for ±J-spin glasses on bond-diluted
lattices in low dimensions. A subsequent finite size scaling
fit of the data allowed us to extract the stiffness exponents
in these dimensions to within 4% to 10% accuracy. Our
approach also allowed the determination of a variety of
other observables associated with the T = 0 transition
into a glassy state at a bond-density p∗ for d ≥ 3. We
hope that the methods introduced here may be applicable
as well to the treatment of other open questions regarding
the low-temperature state of spin glass systems [5,6].

Our value of y3 = 0.24(1) in d = 3 is near the higher
end of previous estimates varying between 0.19 and 0.27,
while y4 = 0.61(2) in d = 4 overlaps with a previous result
of 0.64(5) from reference [14]. There has been no previous
value to compare with for d = 5 or d = 6, the upper
critical dimension, but replica theory [20] would indicate
a faster increase in the value of yd with d than was found
here.

There has been no previous determination of the expo-
nents ν∗, except that it is bound to exceed the value of ν
for percolation [18], and that its mean field value for d ≥ 6
should be ν∗

∞ = 1/2. In light of the fact that ν = 0.875,
0.68, 0.57, and 0.5 for bond percolation in d = 3 to 6 [32],
most of our fitted values for ν∗ do not seem to satisfy these
expectations, which is easily explained by their poor ac-
curacy. For instance, ν∗ ≥ 1/2 should hold, so it appears
that the fitted values of ν∗ are generally too low.
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